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Assignment

REQUIRED READING

° Larsen, R. J. and M. L. Marx. 2006. An introduction to mathematical statistics and its
applications, 4" edition. Prentice Hall, Upper Saddle River, NJ. 920 pp.
o Read All of Chapter 12 & 13,
o Chapter 14.4 Kruskal Wallis ANOVA & 14.5 Friedman ANOVA
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Understanding by Design Templates

Understanding By Design Stage 1 — Desired Results Week 12
LM Chapter 12 & 13 The Analysis of Variance

G Established Goals

. Become familiar with ANOVA, the foundation of experimental and survey design

U Understand

. Model I ANOVA uses the ratio of variances to test for difference in means.

Q Essential Questions

. What is the difference between a Model I and Model Il ANOVA?

. Why can’t all possible pairs of groups be tested at a=0.05

K Students will know how to define (in words or equations)

. ANOVA types (randomized block, factorial, Friedman, Kruskal-Wallis, Model I and
Model II, One-way), Bonferroni, Box-Cox transformation, linear contrast, multiple
comparisons problem, orthogonal contrasts, pseudoreplication, Scheffé multiple
comparisons procedure, Treatment Mean Square, Treatment Sum of Squares,
Tukey-Kramer test (Tukey’s HSD), LSD

S Students will be able to

. Perform parametric and non-parametric ANOV As, including

. Graphically and statistically analyzing the equal spread assumption
. Setting up and performing linear contrasts among ANOVA groups
. Pereform the appropriate a posteriori ANOVA test

Understanding by Design Stage II — Assessment Evidence Week 12 8/16-8/22
Chapter 12, 13 & 14 (Kruskal-Wallis) The Analysis of Variance
. Post in the discussion section by 8/22/11 T
. Any questions on the final exam.
. The final exam will take place between 8/23 & 8/25

Introduction

When I planned the revision of EEOS601 several years ago, I considered two drastically
different types of course. One was this course, based on a strong foundation in probability,
moving to hypothesis testing and finishing with ANOVA. The alternate approach that I almost
followed was to use George Cobb’s 1997 textbook, The Design and Analysis of Experiments
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(Figure 1). In that remarkable text, Cobb, professor emeritus at
Mt. Holyoke, begins chapter 1 with a factorial ANOVA to teach
the fundamental principles in analyzing real data. In a way, Cobb
works backwards through the traditional introductory statistics
curriculum, finishing with ¢ tests near the end of the book (p 733).

ANOVA stands for analysis of variance. A one-factor or one-way
ANOVA involves one factor with two or more levels. As shown in
Larsen & Marx (2006), an independent samples ¢ test is equivalent
to a 1-factor ANOVA with two levels, only the test statistic is a
Student’s # statistic whereas ANOVA uses an F statistic. The test
statistics and p values are closely related in that the F statistic with
1 numerator df is the square of the t test’s 7 statistic and the p
values for the F and ¢ statistics are identical. A factorial ANOVA,

covered in Larsen & Marx Chapter 13 involves two or more Figure 1. Cobb’s 1997 book

factors with two or more levels of each factor. Factorial ANOVA begins with a split-plot

is the key design for experiments because it can assess the ANOVA design and ends

interactions among variables, say for example the interacting with t tests. http:/fechegs.com/fcove

effects of salinity and temperature on animal growth. rs2/9520000/9523597_
1295722792.ipg

A randomized block ANOVA is a subset of factorial ANOVA in which the block is designed to
reduce the contribution of the blocking factor in estimating the error variance, producing a much
more powerful design. In agricultural experiments, fields are often the blocking factor. Fertilizer
levels might be set on different fields, and field-to-field differences are not the primary objects
of study. It is always important to assess the potential interaction of blocks and other treatment
levels, which usually requires that the treatments be replicated within blocks. Tukey devised an
additivity test that allows for block x treatment interactions to be assessed with unreplicated
designs.

In a split-plot ANOVA, introduced by Cobb (1997) in Chapter 1, full replication of treatment
levels isn’t possible so treatments are divided into whole plots and subplots. For example,
experiments involving temperature or humidity might be conducted in greenhouses, which
would constitute the whole plot, while different strains of plant might be tested within each
greenhouse (the subplots).

In a nested or hierachic ANOVA, the experimental units are nested within treatment levels. For
example, a study of predation among the animals that live within mud and sand (i.e., the soft-
bottom benthos) might involve replicated 1-m* quadrats in which a predator has been added. The
benthic animals are sampled using 1-cm? cores. The quadrats are the experimental units, nested
within treatments. The 1-cm?® cores are sampling units nested within the experimental units, the
quadrats.

In a repeated measures ANOVA, the same individual or plot is sampled through time. Drug
trials often involve the same individuals receiving different treatments. The repeated measures
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design, by controlling for individual-to-individual variability produces much more powerful
designs than if separate individuals were sampled.

Principles of ANOVA design

n Design the experiment or survey after identifying the hypotheses and specify the
statistical tests BEFORE collecting data (a priori)
n Do a pre-test or preliminary survey
u If the variance is unknown, consider doing a preliminary experiment to calculate
power for the full analysis
u Also, a pre-test will allow covariates and problems to be identified
u Do a power analysis based on literature data or a preliminary survey.
n Ensure that the number of experimental units assures sufficient power so that any
results obtained are unlikely to be due to chance (the positive predictive value is
different from the Probability of Type I error, Ioannidis (2005))

n If constraints don’t permit a sufficient number of samples
u Use a different measurement procedure, less prone to error
u Reduce the mean squared error through blocking or stratification
u Use a repeated measures design
n If sufficient power still can’t be attained, stop & pick a new research
problem.
n Endeavor to create balanced designs with equal number of replicates at each combination

of treatment and block levels

u ANOVA is robust to unequal spread (i.e., heteroscedasticity) if the design is
balanced (Winer et al. 1991)

n ANOVA tests for difference in means (fixed effect) or whether (o,+6%)/6?>=1 (random
effect) or both (mixed model)

n Fixed vs. random effects
n The choice of fixed vs. random effects is often crucial and depends on whether

the factor levels represent a random or representative sample from some larger
statistical population

u The F statistics, the interpretation of the results, and the extent of statistical
inference often change depending on whether factors are fixed or random.

u Avoid pseudoreplication (Hurlbert 1984)

u Pseudoreplication, a term coined by Hurlbert is also called model
misspecification, has two causes: inadequate replication at the design stage, or

n Using an inappropriate model especially the wrong ANOV A model with an
inappropriate error mean square and error d.f.

u Examples of model misspecification
u Failing to use a repeated measures design for longitudinal data
u Confusing factorial and nested ANOVA
u Inappropriately pooling terms in a nested, randomized block, or factorial

ANOVA
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The alpha level for hypothesis tests (i.e., the critical values) must be set in advance. Tests
and hypothesis, as far as possible, should be specified in advance. 4 priori hypotheses, if
a small subset of the possible tests that might be performed, can be tested at the
experiment- wise alpha level, usually 0=0.05.

Patterns which reveal themselves after the data have been analyzed, or even graphed,
must be assessed using an appropriate multiple comparison procedure that reduces the
test o to maintain the experiment-wise or family-wise a level (usually a=0.05)

After writing down the hypotheses to be tested and the tests to be performed, graph the
data and critically look for violations of the assumptions, especially unequal spread

n Use boxplots & Levene’s tests to assess unequal variance & detect outliers
n =unequal variance = heteroscedasticity = heteroskedacity = lack of
homoscedasticity
u Unequal variance is best revealed by box plots
u Unequal spread can be tested with Levene’s test
Transform the data to correct unequal spread
n v transform for Poisson-distributed counts, log (X+1) for logarithmically or
log-normally distributed data
n Logit (log (p/(1-p)) transform or arcsin vP for binomial data
Perform the ANOVA
Assess higher order interaction effects and analyze the influence of outliers
u Graphically display residuals vs. expected values & assess
heteroscedasticity (again) and effects of outliers
n Note that an outlier is only an outlier when compared to an underlying
probability model

Use appropriate rules for pooling sums of squares to produce more powerful tests of

lower order interactions & main effects

Examine the data for outliers, but

u Never remove outliers without strong justification

n Examine data notebooks to find out if there were conditions that justify treating
outliers as a different statistical population (e.g., different analyst or different
analytical instrument)

u If the outlier’s removal might be justified
u Do the analysis with and without the outlier
u If the conclusion remains the same, leave the outlier in,
unless it has caused a major violation in assumptions
n If the conclusion differs, drop the outlier and all similar
data
n If there is no reason for removing the outlier

u Use rank-based methods, like Kruskal-Wallis or Friedman’s
ANOVA which are resistant to outlier effects
u Report the results with and without the oultier
Evaluate null hypotheses, report p values & effect sizes
Multiple comparisons procedures, from most to least conservative
n Scheffé: must be used whenever more than one group is combined in a linear
contrast, more conservative than Bonferroni
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u Scheffé multiplier:
= ‘/[(I'1)F(1-1),d.f.,.(1-a)]
n Where, 1 is number of groups, d.f. =error df, F ) 4 1) 15 95th
percentile of F distribution
u Bonferroni: insufficiently conservative for all possible linear contrasts, but the
most conservative for pair-wise contrasts
u Tukey’s Honestly Significant Difference (HSD), also called Tukey-Kramer if
sample sizes are unequal
u Student-Newman-Keuls More powerful than HSD
Dunnet’s, appropriate if there is a control group
n Tukey’s LSD with F-protection: Use LSD if the overall F statistic is significant;
not sufficiently conservative
u Report all relevant p values and df needed to reconstruct the ANOVA table
u Hurlbert (1984): it wasn’t clear in the majority of ecological studies what test
was performed
u Avoid the significant/non-significant dichotomy (see Sterne & Smith (2001))

n Summarize the results of the ANOVA in the text, table or figure. It is unlikely that a
journal will allow both a table and figure, but summary in the text is essential

n Report the effect size (i.e., difference in means with 95% confidence intervals)

n Report negative results, (e.g., failure to reject the null hypothesis)

Fixed Effects ANOVA

A fixed effects ANOVA tests for differences in means by testing the treatment mean square over
the error mean square. Larsen & Marx Theorem 12.2.1 provides the expected value for the
treatment sum of squares:

Theorem 12.2.1. Let SSTR be the treatment sum of squares defined for k independent
random samples of sizes n1,na, ..., and ng. Then
k
ESSTRY = (k — Do? + ) nju; ~ w)?
j=1

Theore m
12.2.5 describe
s the standard F test for testing whether means among treatment levels in a one-factor ANOVA
are different.
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b. At the a level of significance, Hy:jy = py = ... = 1, should be rejected if F >
Fiab—tn—k- =

The results of an ANOVA are usually presented in the form of an ANOVA table, showing the
key F test, the treatment mean square divided by the error mean square.

A priori & a posteriori tests

For all but the simplest ANOVA results, if the null hypothesis is rejected, say p, =p,=L,, there is
still interest in finding out which differences led to the rejection of the null. If the experimenter
has followed proper procedures, the key hypotheses should have been set in advance. They can
now be tested using powerful tests such as the F-protected least significant difference or linear
contrasts. These tests can be performed at an a level of 0.05, or whatever the accepted a level is
for the study.

If the tests haven’t been specified in advance, then the o level must be adjusted for the number
of possible comparisons that could have been performed. The most common multiple
comparison procedure is also just about the most conservative, the Bonferroni procedure. If

there were 5 groups, there are ( ;) or 10 different ways the groups can be compared 2 at a time.

In the simplest version of the Bonferroni correction, the a level would be divided by the number
of possible tests or 10. To maintain an experiment-wise of family-wise alpha level of 0.05, each
test must be performed at the o/Number of tests = 0.05/10 =0.005 level. Without this correction,
the probability of rejecting the null hypothesis after performing 10 independent tests is not 0.05
but is instead Oyperimenas =1 - (1-alpha,,,)'*=1-0.95'=0.4013. If the alpha level is divided by the
number of tests, the experiment-wise alpha level is maintained: 1-(1-0.05/10)" = 0.0489.
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If the investigator compares averages of more than one treatment group, even the Bonferroni
correction is inadequate to properly protect against multiple hypothesis testing. The Scheffé
procedure is the only standard procedure for adjusting a levels for unplanned linear contrasts.

There are dozens of other multiple comparison procedures that have been proposed. Quinn &
Keough (2002) provide a nice summary. The Tukey-Kramer honestly significant difference
(HSD) is one of the most widely used. The Student-Newmann-Keuls test, based on the
studentized range is more powerful than the HSD.

If there is an unplanned comparison with a control group, then Dunnet’s procedure is

appropriate. Since there are fewer pairwise comparisons when one must be the control group,
Dunnet’s procedure is more powerful in detecting an effect.

Case Studies

CASE STUDY 12.2.1: DOES SMOKING AFFECT EXERCISE HEART RATE?

CASE STUDY 12.2.1

Cenerations of athletes have been cautioned that cigarette smoking retards perfor-
mance. One measure of the truth of that warning is the effect of smoking on heart
rate, In one study (72} examining that impact, six each of non-smokers, light smokers,
moderste smokers, and heavy smokers undertook sustained physical exercise, Their
heart rates were measured after resting for three minutes. The results appear in
Table 12.2.1. Are the differences among the ¥ ;s statistically significant? That is, if

TABLE 12.2.1

Non-Smokers  Light Smokers  Moderate Smokers  Heavy Smokers

i 35 fify 9]
52 b ]| 12
71 T8 i 81
bt} 58 LE) 67
59 fd 57 as
34 i3} T4 B4
T | il 379 450 4y

¥, 62.3 3.2 7.7 81.7

Twenty four individuals undertook sustained physical exercise and their pulse was measured
after resting for 3 minutes. The results are shown in Table 12.2.1. With this experiment, we
should set our null hypotheses in advance, and they are:

H0: H’HR Non-Smokers H HR Light Smokers = “’HR Moderate Smokers H HR Heavy Smokers
Ha: M HR Non-Smokers < W ar Light Smokers < M HR Moderate Smokers < U ur Heavy Smokers

Tests of assumptions

The main assumption to be tested with these data is homoscedasticity, or equality of variances
among groups. This will be tested with a box plot, and if there is an appearance of
heteroscedasticity, or unequal variance, then by the formal Levene’s test. A Levene’s test


IT
Stamp


EEOS 601
Prob. & Applied Statistics
Week 12, P. 12 of 57

performs another ANOVA on the absolute value of the deviations from the means among
groups. There is an m.file submitted by A. Trujillo-Ortiz and R. Hernandez-Walls to the Matlab
user’s group that performs the Levene’s test using the absolute value of the difference between
cases and group means. There are two other common ways for performing the Levene’s test:
squared deviation from group means and absolute value of deviations between group medians. I
suppose one could calculate squared deviation from group medians as well, but I’ve never seen
that proposed.

I used the Box-Cox transformation procedure on these data to find out what transform was
appropriate. As described in my handout 2 (statistical definitions), the Box-Cox procedure will
test a family of transformations including the inverse, power, log, and square root
transformations. Using a user-contribued m.file by Hovav Dror on the Matlab file exchange, the
lambda parameter can be found.

A priori hypotheses

There are many tests that could be peformed with these 4 categories of smoking. There are (:}

or 6, two-at-a-time contrasts (e.g., Non-smokers vs. Heavy Smokers). There are 7 simple linear
contrasts, 4 1-group vs. three-group contrasts (e.g., A vs. B+ C+D) and 3 two-group vs. two-
group contrasts (e.g., A+B vs. C+D). There are 8 ways that groups can be compared 3 at a time
(e.g., Bvs. CD or C vs. BD). Thus, there are 6+4+3+8 or 21 ways the four groups of data can be
compared using simple contrasts and more possible ways to analyze the data with more
complicated linear contrasts. For example one could hypothesize a linear trend among categories
with heart rate increasing with contrast coefficients -3/2, -1/2, 1/2 , 3/2 or one could test for a
hump-shaped pattern in heart rate with a quadratic orthogonal polynomial -3/2 -11/6 -1/6 7/2.
The linear and quadratic contrasts are set to be uncorrelated or othogonal. There is a wonderful
program, called orthpoly.m in the stixbox.m free toolbox for Matlab that allows the calculation
of othogonal polynomials of any degree for an input vector like 1, 2, 3, 4. If we had actual data
on packs smoked per day, we could have used that data to set up an orthogonal contrast.

To keep the analysis simple, I’ll just request five linear contrasts. The first tests whether the non
smokers differ from the weighted average of the non-smoking group. We will set a one-sided
alternative hypothesis in that our strong expectation is that the smokers will have a higher heart
rate.

Hol: “’HR Non-Smokers u HR Light Smokers + “’HR Moderate Smokers + u HR Heavy Smokers
Ha: u HR Non-Smokers < H HR Light Smokers + H HR Moderate Smokers + H HR Heavy Smokers*

The second a priori hypothesis simply tests whether there is a difference between the Non
smokers and Heavy Smokers. Again, we will use a one-sided alternative hypothesis.

Hol: MHR Non-Smokers M HR Heavy Smokers

Ha: u HR Non-Smokers < H HR Heavy Smokers*
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Just for interest’s sake, I’ll also test the contrasts for a linear trend and quadratic trend in the
smoker data. The first of these will be tested against a one-sided alternative. I have no prior
expectation about the 2™ pattern, but I expect that it will be there. It could be a concave-up
hump-shaped pattern or a concave-down hump-shaped pattern. For a publication, I wouldn’t do
this because we haven’t established that smoking effects should be analyzed as an interval-
scaled variable and we have little justification for proposing the 1-to-4 scale. All of these
contrasts will use Gallagher’s Icanova program, which tests linear contrasts with Matlab’s
ANOVA programs. The contrast matrix will be:

Lmatrix=[ -1 1/3 1/3 1/3
-1 0 0 1
-3/2 -V Y 3/2
-3/2 -11/6 -1/6 7/2
747/310 -141/310 -909/310 303/310 ]

The final three orthogonal contrasts — the linear, quadratic, and cubic — comprise a set of
mutually orthogonal contrasts partitioning the treatment sum of squares (See Larsen & Marx
2006 Theorem 12.4.1, p 754).

Results & Discussion

Overall ANOVA

As shown in Figure 3, there is some evidence for

unequal variance among the four groups. Levene’s = ]
test indicated that little evidence (P(F; 5, T

>0.378)=0.77) that these data violated the il
homoscedasticity hypothesis. Larsen & Marx
(2006), following a tradition in introductory
statistics texts, don’t discuss the use of
transformations, but the data in Figure 3 should be
transformed with a log or square-root transform to
equalize the variance among groups. Since the
sample sizes are equal in this study, Winer et al.
(1991) present analyses indicating the the
conclusions of the ANOVA will be robust to minor
violations of the homoscedasticity assumption.

| he four
{ ht, 3,

The Box-Cox Analysis with results shown in Figure
5 indicated that a transformation with lamba=0,
indicating a log transform, would equalize the T R S E e e
variance among groups. But, the 95% CI for lambda i
was -2.5 to 2.2, which includes 1 which is the
lambda indicating no transformation. For the
remainder of the analysis and to conform with the
solutions in Larsen & Marx (2006), the
untransformed data will be used.

Max Log-Likelihood(

Figure 4. Plot of maximum likelihood of
lambda (up to a constant) vs. lambda. The
plot indicates the appropriate lambda is zero
(a In transform), but the 95% confidence
interval includes 1, incdicating no transform
required.
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Table 1 shows the results of the ANOVA. There is strong evidence to reject the null hypothesis
of equal heart rates among the four groups. The F statistic, 6.12, far exceeds the 3.1 critical
value (in Matlab: finv(0.95,3,20)) as shown in Figure 5.

Figure 12.2.2

Figure 5. Plot of the F; ,, distribution
showing the 3.1 critical value.

Table 1. ANOVA Table for Case Study 12.2.1

Source Sum Sq. | d.f. | Mean Square | F Prob>F
Smoking Level | 1464.13 | 3 488.04 6.12 | 0.004
Error 1594.83 |20 | 79.74

Total 3058.96 | 23

Linear Contrasts

The first linear contrast tested the non-smokers vs. the three smoking categories, producing the
ANOVA Table shown in Table 2. With a p value of 0.03, this ANOVA provides modest
evidence against the null hypothesis of equal heart rates between these two groups. The average
smoker has a heart rate 3 minutes after exercise 10 + 9 beats per minute higher than the non
smokers. Note that the 95% CI doesn’t include 0, consistent with the p value of 0.03.

Table 2. ANOVA Table for Case Study 12.2.1. The linear contrast the heart rate of the
non-smokers vs. the weighted average of the 3 smoking categories.

Source | Sum Sq. | d.f. | Mean Square | F Prob>F

Non-smoking vs. 3 smoking categories | 435.1 1 435.1 5.5 10.03
Error | 1594.83 | 20 | 79.74

Total | 3058.96 | 23

The second linear contrast tested the Non-smokers vs. the Heavy smokers, producing the
ANOVA Table shown in Table 3. With a p value of 0.00126, this ANOVA provides very strong
evidence against the null hypothesis of equal heart rates between these two groups. Heavy



smokers hav a heart rate 3 minutes after exercise 19 + 11 beats per minute higher than the non-smokers.

EEOS 601
Prob. & Applied Statistics
Week 12, P. 15 of 57

vs. the heavy smokers.

Table 3. ANOVA Table for Case Study 12.2.1 The linear contrast tests the non-smokers

Source | Sum Sq. | d.f. | Mean Square | F Prob>F
Non-smokers vs. Heaviest Smokers | 1121.3 1 1121.3 14.1 | 0.00126
Error | 1594.83 | 20 | 79.74
Total | 3058.96 | 23

The third linear contrast tested for a linear trend among the four smoking categories, producing
the ANOVA Table shown in Table 4. With a p value of 0.00059, this ANOVA provides very
strong evidence against the null hypothesis of no linear trend. The value for the contrast
indicates that in moving from one category to the next, heart rate increases by 8.3 + 4.3 beats per
minute. A least squares regression, which requires more assumptions be met produces a slope of

6.65 £+ 3.36 between categories.

Table 4. ANOVA Table for Case Study 12.2.1 This linear contrast tests for a linear trend
among the four smoking categories.

Source | Sum Sq. | d.f. | Mean Square | F | Prob>F
Linear trend among smoker categories | 1326.7 1 1326.7 16.6 | 0.00059
Error | 159483 |20 | 79.74
Total | 3058.96 |23

The fourth linear contrast tests for a quadratic or hump-shaped trend among the four smoking
categories, producing the ANOVA Table shown in Table 5. With a p value of 0.00045, this
ANOVA provides very strong evidence against the null hypothesis of no quadratic trend. The
presence of a concave-up pattern in the heart-rate data is consistent with the finding of a strong
hump shaped pattern in addition to the linear pattern.

Table 5. ANOVA Table for Case Study 12.2.1 This contrast tests for a quadratic trend, or
hump shaped pattern, among the four smoking categories.

Source | Sum Sq. | d.f. | Mean Square | F | Prob>F
Linear trend among smoker categories | 1399.0 1 1399.0 17.5 1 0.00045
Error | 159483 |20 | 79.74
Total | 3058.96 |23
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The fifth and final contrast tests for a cubic or S-shaped trend among the four smoking
categories, producing the ANOVA Table shown in Table 6. With a p value of 0.55, this
ANOVA provides very little evidence against the null hypothesis of no S-shaped pattern.

trend among the four smoking categories

Table 6. ANOVA Table for Case Study 12.2.1 This contrast tests for a cubic or S-shaped

Source

Sum Sq. | d.f. | Mean Square | F | Prob>F

Linear trend among smoker categories

30.2 1 30.2 04 |0.55

Error

1594.83 |20 |79.74

Total

3058.96 |23

A posteriori tests

The five a priori tests (out of 24 possible tests)
provide an excellent summary of the data. But there

are several questions left unanswered. For

example, do moderate smokers have heart rates
after exercise different from the other three groups.

These can be answered using appropriate a

posteriori tests. Larsen & Marx (2006) discuss the
Tukey HSD, which is available in Matlab and

Non-smokert <>

Light smoker <«

Mod. smoken

Heavy smoker <«

included in the program for this case study (Matlab: Figure 6. Results of the Scheffé multiple
multcompare(stats,'ctype', hsd',alpha',0.05)). In this comparison procedure indicating that the
exegesis Larsen & Marx case study 12.2.1, we’ve  Heavy smoker group differs from the Non-
used linear contrasts, so the only appropriate a smoker and Light smoker groups. No other
posteriori adjustment procedure is the conservative differences have a p value less than 0.05.
Scheffé procedure (Matlab: multcompare(stats,'ctype','scheffe','alpha',0.05)). The results of that
analysis are shown in Figure 6. The Heavy Smoker heart rates differed from the non-smoker and

light smoker groups, but no other differences had a

p value less than 0.05. There was insufficient

evidence tha the heart rate of moderate smokers

differed from any of the three other groups.

Mod. smoker %
These are the same conclusion that would be
reached with the more liberal Tukey Honestly Heawysmokery Ly
Sigificant Difference (HSD) multiple comparisons 5 60 65 H;‘:rt R;tse 80 85

procedure, as shown in Figure 7.

50 55 60 65 70 75 80 85 90

Non-smoker [&————>
Light smoker { €————>

Figure 7. Results of the Tukey HSD
multiple comparison procedure indicating
that the Heavy smoker group differs from
the Non-smoker and Light smoker groups.
No other differences have a p value less
than 0.05.

920



EEOS 601
Prob. & Applied Statistics
Week 12, P. 17 of 57

Statistical Inference allowed on Case Study 12.2.1

This was an example drawn from a biostatistics text, so inferences based on the data would be
speculative. There is no indication that the subjects were randomly assigned to treatment groups,
as would be required for a proper experiment. It seems unlikely that randomly selected
individuals could be ethically required to smoke large numbers of cigarettes in the days, weeks
or months before exercising for this experiment. R. A Fisher, a pipe smoker, denied that there
was a causal link between smoking and cancer and presumably denied the link between smoking
and heart disease. Fisher (1958) argued that it wasn’t the fault of the early cancer investigators
that a proper experiment to demonstrate a causal link between smoking and cancer couldn’t be
performed:

“Now, randomization is totally impossible, so far as I can judge, in
an inquiry of this kind. It is not the fault of the medical
investigators. It is not the fault of Hill or Doll or Hammond that
they cannot produce evidence in which a thousand children of teen
age have been laid under a ban that they shall never smoke, and a
thousand or more chosen at random from the same age group have
been under compulsion to smoke at least thirty cigarettes a day. If
that type of experiment could be done, there would be no
difficulty.”

Since it was unlikely that individuals weren’t assigned to different categories through
randomization, then no causal link can be claimed between smoking and exercise heart rate.
Indeed, one can guess that heavy smokers are not prone to exercise much, so the results could
have been due to the overall fitness of the four groups and not necessarily to their smoking
habits.

CASE STUDY 12.3.1: BINDING OF ANTIBIOTICS TO SERUM PROTEINS

A boxplot of the data, Figure 8, indicates no

problems with unequal variance. E E E

Figure 8. Notched boxplots for the five
types of antibiotics: 1) Penicillin G, 2)
Tetracyline, 3) Streptomycin, 4)
Erythromycin and 5) Chloramphenicol.
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The results of the ANOVA are shown in Table 7. Penicilin | | | | PR
Differences among antibiotics were tested using Tetracycline | G
Tukey’s HSD and the results are shown graphically stroptomycin |
in Figure 9 and in Table 8.

Erythromycin |
There is exceptionally strong evidence for Chloramphenicol | <>
differences in binding percentage among antibiotics Y gndngpercenge
(ANOVA: P(F, ;5 > 40.9) < 107). At 0=0.05, Figure 9. Means and Tukey HSD 95%
Tukey’s HSD revealed that streptomycin binding  confidence intervals are displayed with with
percentage was lower than the other four antibiotics differing in mean serum binding

antibiotics, and erythromycin binding percentage  indicated by different colors and line styles
was less than penicillin, tetracycline and

chloramphenicol. Tukey’s HSD provided little evidence at 0=0.05 for differences in binding
among penicillin, tetracycline and chloramphenicol.

Table 7. ANOVA Table for Case Study 12.3.1
Source Sum Sq. | d.f. | Mean Square | F Prob>F
Smoking Level | 1480.8 | 4 370.2 409 | <107
Error 135.82 15 19.1
Total 1616.7 19
Table 8. Results of HSD tests using Case Study 12.2 antibiotic data, produced by
Matlab’s multcompare.m
Lower 95% Mean Upper 95%

Level i Level j CI difference ClI Conclusion
Pen. Tetra. -9.3 -2.8 3.8 NS
Pen. Strepto. 14.2 20.8 27.3 Reject
Pen. Erythro. 3.0 9.5 16.1 Reject
Pen. Chloram. -5.8 0.8 7.4 NS

Tetra. Strepto. 17.0 23.6 30.1 Reject
Tetra. Erythro. 5.7 12.3 18.9 Reject
Tetra. Chloram. -3.0 3.6 10.1 NS

Strepto. | Erythro. -17.8 -11.2 -4.7 Reject

Strepto. | Chloram. -26.5 -20.0 -13.4 Reject

Erythro. | Chloram. -15.3 -8.7 2.2 Reject




EEOS 601
Prob. & Applied Statistics
Week 12, P. 19 of 57

CASE STUDY 12.4.1: INFANTS WALKING

Introduction to the case study

Can the age to walking be reduced through walking exercises? Twenty three infants were
randomly divided into four groups, A through D. Group A received 12 minutes of walking and
placing exercises daily. Group B received 12 minutes of daily exercise without special walking
and placing exercise. Group C and D received no special instructions. Group C’s progress, like A
& B, were checked for weekly progress, but Group D was checked only at the end of the
experiment. Table 12.4.1 shows the ages at which the babies walked alone.

In addition to the overall ANOVA, it would be interesting to compare group A with the average
of Groups B through D. It would also be interesting to compare groups A vs. B. A check of C vs.
D would evaluate whether there were any effects of weekly checks. It would also be interesting
to compare the two 12-min exercise groups (A & B) with the two groups that weren’t asked to
do anything (C & D). The linear contrast coefficients can be expressed in a Linear contrast
matrix:

Lmatrix = [ 1 -3 -1/3  -1/3

1 - 0 0
0 0 1 1]

Results & Discussion

The notched boxplots, shown in Figure 10, reveal

some problems with unequal spread, but there was "l ’

an extreme outlier in both groups A & B. This 1

could result in an inflated error variance and I -
indicates that the results should be checked with a

Wilcoxon rank sum test. "l

The overall ANOVA (Table 9) indicates little ol

evidence for any group differences. ==

Figure 10. Notched boxplots for the four
groups. A) 12-min walking & placing, B)
12-min exercise, C) No exercise weekly
monitoring, and D) No exercise without
weekly monitoring
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Table 9. ANOVA Table for Case Study 12.4.1

Source Sum Sq. | d.f. | Mean Square | F Prob>F
Baby Group | 14.78 3 4.93 2.1 [0.13
Error 43.69 19 230

Total 58.47 22

Linear contrasts

The results of the first contrast indicates moderately strong evidence against the null hypothesis
of equal walking times. The baby exercise group walked 1.7 + 1.5 months earlier than the other
groups.

Table 9. ANOVA Table for Case Study 12.4.1 linear contrast
comparing group A vs. Groups B+C+D

Source Sum Sq. | d.f. | Mean Square | F Prob>F
Baby Group | 12.6 1 12.6 5.5 10.03
Error 43.7 19 |23

Total 58.5 22

The linear contrast between groups A and B indicated that group A walked 1.2 + 1.8 months
before group B, a difference that could be due to chance (P (F, ;4 > 2.0)=0.17 with a 95% CI that
includes 0). The linear contrast between the two 12-min exercise groups (A +B) and the two
other groups (C+D) indicated that group A & B walked 1.28 + 1.33 months before groups C+D,
a difference that could be due to chance (P (F, ;y > 4.1) = 0.058 with a 95% CI that includes 0).
The linear contrast between groups C and D indicated that group C walked 0.6 + 1.9 months
before group D, a difference that could be due to chance (P (F, ;y > 0.5) = 0.49 with a 95% CI
that includes 0).

Because of the two extreme outliers, a Kruskal-Wallis ANOV A was performed, but there was
only weak evidence against the null hypothesis of equal medians among groups
(P(*;>6.88)=0.076). Thus, the parametric and non-parametric ANOVA’s produced similar
results.

CASE STuDY 13.2.1: FEAR OF HEIGHTS

Introduction

Three different therapies to treat fear of heights was tested on 15 subjects. The subjects were
given a HAT test assessing their fear of heights and were divided into 5 groups of 3 based on
their initial fear of heights. One individual in each group was assigned randomly to each of the
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three treatments. After the treatments, the subjects were given the HAT test again and the

response is the difference in scores.

Contact
Block  Desensitization
A 8
B 11
s 9
D 16
E 24
T 68

TABLE 13.2.3: HAT Score Changes

Therapy

Live
Modeling

Demonstration
Participation

5]

1 (
12
11
19 11
45

Experimental design issues: lack of replication

Unfortunately, the treatments weren’t replicated among blocks, and it is vitally important to
assess the block by treatment interaction effect. Does the effect of a treatment differ based on

the initial classification of fear of heights (i.e

., the assignment to groups A through D).

Fortunately, this can be tested with the Tukey additivity test, discussed in Quinn & Keough

(2002) and available as a user-contributed m.

Results

The boxplots (Figure 11) indicate little evidence for

unequal spread.

file for Matlab.

25F

20r

P

Contact Desensitization Demonstration Live Modeling

Figure 11. Notched boxplots for the three
treatments: Contact Desensitization,
Demonstration Participation, and Live
Modeling.
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The interaction between blocks and treatments can 25
usually be qualitatively evaluated by a plot of
treatment level means by block as shown in Figure
12. The Tukey additivity test with a p value of 0.6 15k
provided little evidence to reject the assumption of
additivity of block and treatment effects.

HAT Score

There is exceptionally strong evidence for a
Therapy effect on change in HAT scores
(Randomized blocked ANOVA P{F,;> 15.3 | 5

—B
—CY
— D

H,}=0.002). There was also a pronounced block
effect with the groups with the strongest acrophobia
showing the least improvement in HAT scores
(ANOVA P{F,4>12.8 [H,}=0.002).

Therapy

Figure 12. Interaction between therapies
and fear of height blocks. Notched boxplots
for the four groups. Group A had the

greatest fear of heights and Group C the

least.

Table 9. ANOVA Table for Case Study 13.2.1

Source Sum Sq. | d.f. | Mean Square | F Prob>F
Treatment | 260.9 2 130.5 15.3 | 0.002
Fear Block | 438 4 109.5 12.8 | 0.002
Error 68.4 8 8.6
Total 767.3 14

A posteriori tests

A posteriori tests using Tukey’s HSD are shown in

Figure 13. There is very strong evidence that the ~ Therapy=CD |

contact desensitization (CD) therapy increased

mean HAT scores relative to Live Modeling (LM)  Therapy=DP

(Difference + half 95% CI1=10.2 + 5.3 using

Tukey’s HSD). There is little evidence for a Therapy=LM [

difference between CD and Demonstration 0 2 4 6 8 10 12 1a 18

Participation (DP): difference=4.6+5.3. There was  Figure 13. Treatment means and Tukey

modest evidence that the mean DP HAT score
exceeded LM: difference + half 95% CI = 5.6+5.3.

HSD 95% confidence limits.

18
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CASE STuDY 13.2.2: RAT POISON

Introduction

Rats are treated by poisoning cornmeal, but in some areas, rats won’t eat the cornmeal unless it
is flavored. Mixing it with real food leads to spoilage so in 5 different surveys, corn meal was
mixed with artificial flavoring and the response measured relative to a cornmeal control. The
response variable is the fraction of cornmeal eaten by rats.

TABLE 13.2.5

Survey Mumber  Plain ~ Butter Vanilla

Roast Beef Bread

| 138 1.7 14.0 126
2 129 16.7 155 135
3 259 208 274 250
4 180 23.1 23,0 169
5 15.2 0.2 (X 13.7

Results and Discussion

The boxplots shown in Figure 14 revealed no

. .« . . 30 _ T
problems with the homoscedasticity assumption. wl } |
| T
26 - : : ]
[
245 : ‘ I 1
2t : : g
| |
20 ! | ]
1
181 1
16} ‘ —
14 | L ]
1 | .
12 1 1
10 1
Plain Butter Vanilla Roast Beef Bread

Figure 14. Notched boxplots for the three
treatments: Contact Desensitization,

Demonstration Participation, and Live
Modeling.
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Figure 15 reveals sets of nearly parallel lines
indicating no evident block by treatment
interactions. There is little evidence for an
interaction between Survey and Flavor (Tukey
additivity test P{F, ;;>2.4|H }=0.16).

The ANOVA Table, shown in Table 10 provides
strong evidence for differences in the percentage of
bait eaten among flavors (randomized block

Figure 15. Treatment by block plot. The set

ANOVA P{F, ,,>7.6]H,}=0.0042). There were also ©f nearly parallel lines indicates little
substantial differences in bait consumed among the Problem with interaction of flavors and

5 surveys (P{F, ,>50H,}<107). Surveys.
Table 10. ANOVA Table for Case Study 13.2.2
Source Sum Sq. | d.f. | Mean Square | F Prob>F
Survey 495.3 4 123.8 50 <10
Flavor 56.4 3 18.8 7.6 | 0.0042
Error 29.8 12 |25
Total 581.5 19
Results of Tukey’s HSD tests are presented in :
Figure 16. Groups for which there is insufficient ¢, o | AB
evidence to reject the equal means hypothesis (at
=0.05) are indicated by the same letters. For C
example, bread flavor isn’t different from plain but F"°=8" | ° ]
is less than roast beef and butter flavor. BC
Flavor=RB —_—
Flavor=Br —_—

Figure 16. Treatment means and Tukey
HSD 95% confidence limits.
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CASE STuDY 13.2.3: TRANSYLVANNIA EFFECT

Introduction

Are hospital admission rates higher during the full moon? This case study will apply linear

contrasts to a factorial model.

TABLE 13.2.8

Admission Rates (patientsiday )

(1) (2) (3
Before Full During Full  After Full

Month Moon Moon Moon ¥
Aug. 6.4 5.0 58 5.73
Sept. 7.1 13.0 9.2 0,77
Ot f.5 14.0 79 947
Now, H.6 12.0 1.7 Q.43
Dec. 8.1 a0 11.0 8.37
Jan. 10.4 9.0 12,9 10.77
Feb, 1.5 13.0 13.5 12.67
Mar. 13.8 1 6.0 13.1 1430
Apr, 154 25.0 15.8 18.73
May 15.7 13.0 133 1400
June 11.7 14.0 12.8 12.83
Tuly 158 20,0 14.5 16,77
Y.; 10,92 13.33 11.46

Results & Discussion

The boxplot shown in Figure 17 reveals no evident
problems with heteroscedasticity.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Figure 17. Boxplots for the three moon
phases: before, during and after full-moon
phases.
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The month by phase plot shown in Figure 18 reveals some major problems with interactions
between blocks (months) and treatments. There is moderate evidence to reject the null hypothesis
of no interaction among phases and months (Tukey additivity test P{F,,,>4.5 | H,} = 0.046)

With the significant interaction effect, it isn’t appropriate to rely on the overall ANOVA test. All
one should do is display Figure 18 and state that the effect depends on month. There is not
evident reason for the interaction with August, June and February all showing the three lowest
full moon admissions and all three of these months showing a decline in admissions relative to
other months.

Ignoring the evident interaction effect, Table 11 shows the ANOVA results. There is a strong
monthly effect on admissions (p < 10™*) but only very modest evidence (p=0.06) for a
Transylvania effect.

Table 11. ANOVA Table for Case Study 13.2.3

Source Sum Sq. | d.f. | Mean Square | F Prob>F
Phases 38.6 2 19.3 3.21 | 0.06
Months 451.1 11 | 41.0 6.8 | 0.0001
Error 132.1 22 16.0

Total 621.8 35

Testing the factorial model with interaction term

Instead of considering all 3 phases of the moon, if we consider just two groupings, full moon and
not full moon, we can free up degrees of freedom to formally test for the interaction effect.
Table 12 shows the ANOVA results. There is very strong evidence (p=0.001) for rejecting the no
interaction null hypothesis.

Table 12. ANOVA Table for Case Study 13.2.3
Source Sum Sq. | d.f. | Mean Square F | Prob>F
Lunar Phases 36.8 1 36.8 249 | 0.0003
Months 483.8 11 43.9 29.7 | <10°
Lunar Phases x Months | 116.1 11 10.6 7.1 0.001
Error 17.8 12 1.5
Total 621.8 35
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and July to December (Figure 20). There is an
obvious pattern of having lower lottery numbers with later months.

This lack of independence among months can be 350 ‘ ;
formally tested with a Kruskal-Wallis ANOVA. 200 1 i
Two separate analyses were done, one with all 12 w0l }
months and another with just the two 6-month wl =<

periods. There is strong evidence that the 1969 draft | S
lottery was not random (Kruskal Wallis ANOVA of
median ranks among months, P{y,,* > 26 |
H,}<0.007). When months are pooled {Jan-Jun vs.
July-Dec}, there was striking evidence against the
null hypothesis that lottery number is independent
of time of year (Kruskal Wallis ANOVA of median
ranks among months, P{y,> > 16.8 | H,} <10™).

100

50

Figure 20. Notched boxplots for the lottery
numbers by month (1 is January).

It is obvious that the 1969 draft lottery was not fair. Despite this, Larsen & Marx (2006, p 830)
note that these draft lottery numbers were those that were used.



CASE STuDY 14.5.1: BASE RUNNING

There are several different strategies for base
runners in baseball to go from home to 2™
base. One is narrow angle and the other is
wide angle, shown at right.

22 base runners were asked to run from from
home the 2™ base and their times recorded
from a position 35 feet from home plate to a
point 15 feet from second base. Those times
are shown below. The data were analyzed
with a Friedman’s ANOVA.

There is very strong evidence that the median
base running speed from home to 2nd base
with the wide-angle approach is faster than
the narrow-angle approach (Friedman’s
ANOVA: {P{y,’}>6.55=0.011)
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CASE STUDY 14.5.1

Baseball rules allow a batter considerable leeway in how he is permitted to run from
home plate to second base. Two of the possibilities are the narrow-angle and the
wide-angle paths diagrammed in Figure 14.5.1, As a means of comparing the two, time
triaks were held involving 22 players (217). Each player ran both paths, Recorded for
each runner was the time it took to go from a point 35 feet from home plate to a point
15 feet from second base. Based on those times, ranks (1 and 2) were assigned to each
path for each player (see Table 14.5.1).

Nammow-angle Wide-angle

FIGURE 14.5.1; Batter's path from home plate 1o second base,

[ Connimued on mext page)

Table 14.5.1. Times (sec) Required to Round First Base

Player Narrow-Angle Rank Wide-Angle Rank
] 550 1 558 2
2 5 T0 | 5.75 2
i 5.60 2 5.50 1
H 5.50 2 540 l
S 5.85 2 5.70 1
f 558 | .60 2
7 540 . 5.3% |
| 5.50 2 535 !
9 515 2 S.00 !

10 5.80 z £70 [

1 5.20 2 510 !

12 5.55 2 545 l

13 538 1 5.45 2

14 500 2 49% 1

15 5.50 2 540 |

] 5.55 2 5.50 ]

17 5.55 2 5.35 1

18 5.50 1 5.5% 2

19 5 45 2 §,25 1

X0 560 z 540 1

21 5.65 s $.55 1

2 f.30 2 625 |

7

L
<
ra
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Annotated outline (with Matlab scripts) for Larsen & Marx
Chapter 12-13

12 The analysis of variance (Week 12)
Ronald A. Fisher
12.1 INTRODUCTION
12.1.1 ANOVA, short for analysis
of variance
12.1.2 Comment. Fisher was the
major early developer of
ANOVA
Table 12.1.1

Figure 21. Table 12.1.1.
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12.2 THE F TEST
12.2.1 Distribution assumption: the Yij’s will be presumed to be independent and
normally distributed with yj, j=1, 2, ..., k and variance ¢? (constant for all

j)
12.2.2 Sum of squares
12.2.2.1 Treatment sum of squares

Theorem 12.2.1 Let SSTR be the treatment sum of squares defined for k independent random
samples of sizes nl, n2, ..., and nk. Then

k
E(SSTR) = (k-1)¢* +JZ:; n; (uj - py?

12.2.3 Testing p,=p,= ... =p, when ¢’ is known
Theorem 12.2.2 When H_: u,=p,= ... =p, is true, SSTR/6? has a chi square distribution with k-1
degrees of freedom.
12.2.4 Testing H, : p,=p,= ... =p, when 6? is unknown
Theorem 12.2.3 Whether or not H,: p,=,= ... =y, is true.
1. SSE/o? has a chi square distribution with n-k degrees of freedom
2. SSE and SSTR are independent.
Theorem 12.2.4 If n observations are divided into k samples of sizes n,, n,, ..., and n,
SSTOT=SSTR+SSE
Theorem 12.2.5 Suppose that each observation in a set of k independent random samples is
normally distributed with the same variance 6>. The u,, W, ... and p, be the true means associated
with the k samples. Then
a. IfH,: w, W, ... = py 1s true
Fo- SSTR/(k - 1)

SSE/(n - k)
b. At the a level of significance, H,: W, W, ... =y, should be rejected if
F>F o nk
12.2.5 ANOVA tables
Source df | SS MS | F P
Treatment | k-1 | SSTR | MSTR | MSTR | p(p, . > observed F)
MSE '
Error n-k | SSE MSE
Total n-1 | ssTOT

Case Study 12.2.1 Figure 22 Figure 12.2.1
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Case Study 12.2.1

Hypotheses:

H,: MNon-smoking — MLight — HModerate — MHigh

H,: MNon-smoking < MLight < Moderate < Miigh

Heart rate increases with increasing smoking

Statistical test: One-way ANOVA

Alpha level = 0.05 for assessing effects and reporting confidence limits

Multiple comparison & Linear contrast

Compare non-smoking with smoking using Dunnet’s procedure, or this a priori linear contrast
Test C = 1Non-1/3Light-1/3Mod-1/3 High

% LMcs120201 4th.m
% LMcs120201 4th.m
% Case Study 12.2.1, Smoking & Exercise Study
% Larsen & Marx (2006) Introduction to Mathematical Statistics 4th edition
% Page 740
% Written by Eugene.Gallagher@umb.edu 12/3/2010; revised 2/15/11
% There are at least 2 ways to analyze these data with Matlab: anoval &
% anovan
DATA=[69 55 66 91
5260 81 72
7178 70 81
58 58 77 67
59625795
65 66 79 84];
DATA=DATA;
Tdotj=sum(DATA);
Ymeandotj=mean(DATA);
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[p,table,stats] = anoval(DATA);

pause

% ANOVALI can only be used for balanced data. ANOVAN is the more

% general approach, but the data have to be restructured

multcompare(stats,'ctype','hsd','alpha',0.05)

pause

% Since a linear contrast was used below, the Scheffe procedure should be

% used for the pair-wise contrasts.

multcompare(stats,'ctype','scheffe’,'alpha’,0.05)

pause

y=DATAC(:); % convert the data into columns

group=repmat(1:4,6,1);group=group(:);

% Levene test downloaded from Matlab Central

Levenetest([y group],0.05);

% Levene's test indicates no evident problems

% Try a box-cox transformation, but 1st set up dummy variables

X=[ones(length(y),1) [ones(6,1);zeros(18,1)] ...
[zeros(6,1);0nes(6,1);zeros(12,1)] [zeros(12,1);0nes(6,1);zeros(6,1)]];

PlotLogLike=1;LambdaValues=1;alpha=0.05;

[LambdaHat,Lambdalnterval|=boxcoxlm(y,X,1,[-4:0.01:4]);

pause

[p,table,stats,terms] = anovan(y,group,'varnames','Smoking Level');

% Generate Figure 12.2.2 using LMex040307 4th.m as a model.

X=0:.01:4.5;

Y = fpdf(X,3,20);

plot(X,Y,-k");

axis([0 4.5 0 0.8]);title('Figure 12.2.2','FontSize',20);

axl=gca;

xlabel('y','FontSize',16),

ylabel('f {F {3,20}}(y)','FontSize',16);

axl=gca;

set(ax1,'xtick’,3.1,'FontSize',14);

hold on;

xf=3.1:.01:4.5;yf=fpdf(xf,3,20);

fill([3.1 xf 4.5],[0 yf 0],[.8 .8 1])

text(1,0.1,'Area=0.95','FontSize',18);

text(3.1,0.1,'Area=0.05",'FontSize',18)

figure(gcf);pause

hold off;

% The following analysis uses the concept of linear contrast presented on

% page 751-758 in Larsen & Marx. The linear contrast between smokers and

% the one non-smoking group was set a priori, so it can be tested and

% reported with an alpha level of 0.05.

format rat; LM=center(orthpoly(1:4,3,1))

LMatrix=[ -1 1/3 1/3 1/3
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-1 0 0 1

=32 -1/2 172 3/2

-3/2-11/6 -1/6 7/2
747/310  -141/310  -909/310 303/310];
% Call's Gallagher's anova linear contrast function
anovalc(LMatrix, y, group, stats);
% To compare the slope of the 3rd linear contrast with a regression, slope
% do a linear regression.
x=[ones(length(y),1) [repmat(1,6,1);repmat(2,6,1);

repmat(3,6,1);repmat(4,6,1)]];

[b,bint,R,RINT,STATS] = regress(y,x)

Source SS df MS F Prob>F
Columns 1464.13 3 488.042 6.12 0.004
Error 1594.83 20 79.742
Total 3058.96 23

Figure 12.2.3

12.2.6 Computing formulas
Questions

12.2.7 Comparing the Two-Sample t Test with the Analysis of Variance
Example 12.2.2 Demonstrating the equivalence of the Students’ t and ANOVA F tests
Questions

12.3  Multiple comparisons: Tukey’s method
12.3.1 Multiple comparisons problem Keeping the probability of Type I error
small even when many tests are performed.

12.3.2 A Background result: the studentized range distribution
Definition 12.3.1 The studentized range
Theorem 12.3.1

Case Study 12.3.1 Serum protein-bound antibiotics.
% LMcs120301 4th.m
% Larsen & Marx (2006) Introduction to Mathematical Statistics 4th edition
% Case Study 12.3.1 Page 749
% Written by Eugene.Gallagher@umb.edu 2/15/11
% There are at least 2 ways to analyze these data with Matlab & ANOVA
DATA=[29.627.3 5.821.629.2
24332.6 62174328
28.530.811.018.325.0
32.034.8 8.319.0 24.2]
Tdotj=sum(DATA)
Ymeandotj=mean(DATA)
[p,table,stats] = anoval(DATA);
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pause % The pause is so that the boxplot can be examined before it is
% overwritten by multcompare's graph

multcompare(stats,'ctype','hsd', 'alpha',0.05)

% ANOVALI can only be used for balanced data.i.e., data with an equal number

% of cases per treatment level

% ANOVAN is the more

% general approach, but the data have to be restructured so that they are

% all in one column.

% This will be introduced later in the chapter

% multcompare(stats,'ctype','hsd’)

y=DATAC(:); % convert the data into columns

group=repmat(1:5,4,1);group=group(:);

[p.table,stats,terms] = anovan(y,group,'varnames',  Among Antibiotics');

multcompare(stats,'ctype','hsd");

12.4 TESTING HYPOTHESES WITH CONTRASTS
Definition 12.4.1

koc.c,.
Orthogonal contrasts: Two contrasts are said to be orthogonal if E Yy .

= n.
J=1 7

Definition 12.4.2
Theorem 12.4.1 mutually orthogonal contrasts
Theorem 12.4.2

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7 Testing subhypotheses with orthogonal contrasts
Definiton 12.4.1
Comment
Definition 12.4.2
Theorem 12.4.1
Theorem 12.4.2
Comment

Case Study 12.4.1 Infant walking

% LMcs120401 4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics 4th edition
% Case Study 12.4.1 Page 755-756

% Are there differences in infant walking times based on exercise?

% Written by Eugene.Gallagher@umb.edu 12/3/2010, revised 2/15/11

% There are at least 2 ways to analyze these data with Matlab & ANOVA
% Note that I'm using 'not a number' to balance the matrix.

DATA=[9 11 11.513.25
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951012 11.5
975109 12
1011.7511.513.5
1310.513.2511.5
9.5 15 13 NaN]
sumDATA=sum(DATA);
meanDATA=mean(DATA);
[p,table,stats] = anoval(DATA);
pause
multcompare(stats,'ctype’,'hsd');
% ANOVALI can only be used for balanced data.i.e., data with an equal number
% of cases per treatment level
% ANOVAN is the more
% general approach, but the data have to be restructured so that they are
% all in one column.
pause
% ANOVALI can only be used for balanced data.i.e., data with an equal number
% of cases per treatment level
% ANOVAN is the more
% general approach, but the data have to be restructured so that they are
% all in one column.
pause
y=DATA(:); % convert the data into columns; drop the NaN elements
group=repmat(1:4,6,1);group=group(:);i=~isnan(y);y=y(i);group=group(i);
[p,table,stats] = anovan(y,group,'varnames','Exercise');
multcompare(stats,'ctype','hsd");
% Levene test downloaded from Matlab Central
Levenetest([y group],0.05);
% Program the linear contrast from Definition 12.4.2 (confirmed with
% PASW oneway and UNIANOVA)
% By using fractional coefficients, the difference in means for the
% contrasts will be of the right size.
LMatrix=[1 -1/3 -1/3 -1/3

1 - 0 0
12 12-12 12
0 0 1 1]

% Call's Gallagher's anova linear contrast function

anovalc(LMatrix, y, group, stats);

% Because of the two outliers, use a Kruskal-Wallis ANOVA to check results
[P,ANOVATAB,STATS] = kruskalwallis(y,group)

multcompare(STATS)

12.5 DATA TRANSFORMATIONS
Example 12.5.1
Example 12.5.2
Questions
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12.6  Taking a second look at statistics (putting the subject of statistics together — the
contributions of Ronald A. Fisher)
12.6.1
12.6.2
12.6.3
Appendix 12.A.1. Minitab applications
Appendix 12.A.2. A proof of theorem 12.2.2
Appendix 12.A.3. The distribution of SSTR/(k-1)/SSE(n-k) when H, is true
Definition 12.A.3.2
Theorem 12.A.3.2

13 Randomized Block Designs

13.1  INTRODUCTION

132 THE F TEST FOR A RANDOMIZED BLOCK DESIGN
Theorem 13.2.1 & 13.2.2

Theorem 13.2.3. suppose that k treaiment levels with means p Ve M2 an . piy are measured
over a set of b blocks. Then
& [fHy:py = pa =... = uy is true,
SSTR/tk = Iy
SSE/b = 1k 1
has an F distribution with & -~ 1 and (b - ik 1) degrees of freedom.
b. At the « level of significance, Ho:py = s = ... = py should be rejected if F =
Fleax=1.-10e=1

Theorem 13.2.4

Case Study 13.2.1 Acrophobia
%LMcs130201 4th.m

Case Study 13.2.2 Rat poison

%LMcs130202 4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics 4th edition
% Case Study 13.2.1 Page 780-781

% Written by Eugene.Gallagher@umb.edu 12/3/2010; revised 12/7/2010

% Calls other files

DATA=[13.811.7 14.0 12.6

12.916.715.513.8

25.929.827.825.0
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18.023.123.016.9

15.220.219.0 13.7];

boxplot(DATA,'sym','r*','labels,...

{'Plain','Butter Vanilla','/Roast Beef','Bread'});

figure(gcf);pause

plot(DATA");

axl=gca;

set(ax1,'xtick',[1 2 3 4]);legend('1",2','3",'4",'5");

xlabel('Therapy');ylabel('HAT Score');

figure(gcf);pause

pause % Needed so can see the box plots

sumDATA=sum(DATA);

meanDATA=mean(DATA);

y=DATA();

% convert the data into columns;

gl=repmat(['S1';'S2"'S3";'S4";'S5",4,1);

g2=[repmat('PI',5,1);repmat('Bu',5,1);repmat('RB',5,1);repmat('Br',5,1)];

% find and delete any NaN elements, if any

i=~isnan(y);y=y(i);g1=gl(i,:);g2=g2(i,’);

[p,table,stats] = anovan(y,{gl g2},'model’,'linear’,...
'varnames',{'Survey';'Flavor'});

[c,m,h] = multcompare(stats,'display','on','dimension',2);

figure(h)

title(' "), xlabel(" '); figure(gcf)

pause;

% Since the treatments were not replicated within blocks, Tukey's test

% for additivity should be run:

rl=repmat([1:5]',4,1);

r2=[repmat(1,5,1);repmat(2,5,1);repmat(3,5,1);repmat(4,5,1)];

X=[yrl r2];

adTukeyAOV2(X,2,0.05)

13.2.1 Tukey Comparisons for Randomized Block Data
Theorem 13.2.5

Example 13.2.1
Tukey tests already incorporated in previous m.files for the case studies

13.2.2 Contrasts for randomized block designs

Case Study 13.2.3

%LMcs130203 4th.m

%LMcs130203 4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics 4th edition
% Case Study 13.2.3 Page 778-779, The Transylvannia5 effect

% An example of linear contrasts for Randomized Block data.

% Written by Eugene.Gallagher@umb.edu 2/15/11

% Calls Trujillo-Ortiz et al. adTukeyAOV2.m from Matlab file central
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% Tukey's test for additivity.
fprintf("\nAnalysis of Case Study 13.2.3: The Transylvannia Effect\n’)
DATA=[6.45.05.8
7.113.09.2
6.514.07.9
8.6127.7
8.1611
10.4912.9
11.513.013.5
13.816.0 13.1
15.425.015.8
15.713.013.3
11.7 14.0 12.8
15.8 20 14.5];
[R,C]=size(DATA);
boxplot(DATA,'sym','r*','labels,...
{'Before Full Moon','During Full Moon','After Full Moon'});
figure(gcf);pause

plot(DATA");
axl=gca;
set(ax1,'xtick',[1 2 3]);
set(ax1,XtickLabel',...

{'Before Full Moon','During Full Moon','After Full Moon'},'FontSize',9);
legend('Au','Se','Oc',/Nv','De','Ja','Fe','Mr",'Ap', My','In", JI');
xlabel('Moon Phase');ylabel('Hospital Admission Rates');
figure(gcf);pause
pause % Needed so can see the box plots
sumDATA=sum(DATA);
meanDATA=mean(DATA);

% Since the design is balanced, either anova2 or anovan can be used.
[p,table,stats]=anova2(DATA,1)

% This will produce the ANOVA table as a figure. The results are

% printed out in table. stats could be sued for multcompare

pause

% The data can also be analyzed using anovan, producing identical results.
% anovan allows labeling of the ANOVA table.

y=DATAC();

% convert the data into columns; drop the NaN elements
gl=repmat(['Au';'Se';'Oc';Nv';'De";Ja';'Fe'; Mr';'Ap'; My';'In";'J1',3,1);
g2=[repmat('BFM',12,1);repmat('DFM',12,1);repmat('AFM',12,1)];
group=[repmat(1,12,1) repmat(2,12,1) repmat(3,12,1)];

% find and delete any NaN elements, if any
i=~isnan(y);y=y(i);g1=g1(1,:);g2=g2(i,:);group=group(i);

% Use Trujillo-Ortiz's Levenestest
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levenetest([y group],0.05);

[p,table,stats] = anovan(y,{gl g2},'model',linear’,...
'varnames', {'Months';'Lunar Cycles'})

% This is Example 13.2.1, comparing treatments

[c,m,h] = multcompare(stats,'ctype','tukey-kramer','display','on’,...
'dimension',2);

fprintf('Pairwise Difference \tLower 95\tEstimate\tUpper 95\n");

fprintf("\t\t%1.0f - %1.00\t\t\t  %4.11\t\t%4.11\t\t%4.1f\n',c")

figure(h);

title(' "), xlabel(" ');xlabel('"Hospital Admission Rates');

title('Case Study 13.2.3"),

figure(gcf)

pause;

% Since the treatments were not replicated within blocks, a test

% for additivity should be run. If replicates were available a formal

% block by interaction test could have been run.

rl=repmat([1:R]',C,1);

r2=[repmat(1,R,1);repmat(2,R,1);repmat(3,R,1)];

X=[yrl 12];

adTukeyAOV2(X,2,0.05)

% Note that there is evidence (p=0.046) to reject the additivity assumption

fprintf("\nCheck the additivity assumption with just 2 groups:\n')
% Reanalyze the data pooling 2 non-full moon periods.
D=mean(DATA(,[1 3])");D=[D DATA(,2)];

plot(D);

axl=gca;

set(ax1,'xtick’,[1 2]);

set(ax1,XtickLabel',...

{'Not Full Moon','Full Moon'},'FontSize',9);
legend('Au','Se','Oc',/Nv','De','Ja','Fe','Mr",'Ap', My",'In", JI');
xlabel('Moon Phase');ylabel('Hospital Admission Rates');
figure(gcf);pause
pause % Needed so can see the box plots
[r,c]=size(D);
rl=repmat([1:r]',c,1);
r2=[repmat(1,r,1);repmat(2,r,1)];

X=[D(:) r1 12];
adTukeyAOV2(X,2,0.05);
% p=0.0367; so still a strong interaction evident.

[p2,table2,stats2] = anovan(D(:),[r]1 r2],'model',linear",...
'varnames', {'Months';'Lunar Cycles'})
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% Not covered in Larsen & Marx, but now it is possible to test formally
% for the interaction term.
Y=DATAC();
Gl=repmat(['Au';'Se';'Oc';'Nv';'De";'Ja";'Fe';'Mr';'Ap';' My';'In"; J1'],3,1);
% set two groups: Not full moon and During Full moon
G2=[repmat('NFM',12,1);repmat('DFM',12,1);repmat('NFM',12,1)];
Group=[repmat(1,12,1) repmat(2,12,1) repmat(1,12,1)];
% find and delete any NaN elements, if any
i=~1snan(Y); Y=Y (1);G1=G1(1,:); G2=G2(1,:); Group=Group(1);
% Use Trujillo-Ortiz's Levenestest
levenetest([Y Group],0.05);
[p,table,stats] = anovan(Y,{G1 G2},'model',2,...

'varnames', {'Months';"Lunar Cycles'})
% There should be no formal analysis of main effects of the main effects if
% I was taught in my graduate statistics class that if there is a
% significant interaction, show the interactions in an effects plot,discuss
% them and end the analysis.

% If there were no interactions, this would be a valid post hoc analysis:

% The following analysis uses the concept of linear contrast presented on

% page 751-758 in Larsen & Marx. The linear contrast between the full moon
% period and the other two phases was set a priori, so it can be tested and

% reported with an alpha level of 0.05.

LMatrix=[-1/2 1 -1/2];

planned=o0;

anovalc(LMatrix, y, group,stats,planned)

function anovalc(LMatrix, y, group, stats, planned)

% format anovalLC(LMatrix, y, group, stats,planned)

% Input LMatrix

% Each row of the LMatrix should contain a linear contrast

% LMatrix =[-1 1 0 0;-0.5 0.5 0 0] will return identical contrasts

% y=data in a column vector

% group is the column vector indicating group membership

% stats is output from anoval, anova2 or anovan

% planned =1 if the contrast was planned a priori

% planned =0 if the contrast was not planned, in which case Scheffe
% multipliers will be used.

% Written by Eugene D. Gallagher 12/7/2010

if nargin<$;planned=1;end

[R,C]=size(LMatrix);

% Create placeholder vectors for the output of the data
G=unique(group); % Contains indices indicating treatment membership
n=zeros(1,C);

meanDATA=zeros(1,C);

sumDATA=zeros(1,C);



SSC=zeros(R,1);
F=zeros(R,1);
Fprob=zeros(R,1);
g=zeros(R,1);
seg=zeros(R,1);
tdf=tinv(0.975,stats.dfe);
for j=1:C
i=find(group==G(j));
n(j)=length(i);
sumDATA(j)=sum(y(1));
meanDATA(j)=mean(y(1));

end

for i=1:R % do each linear contrast

sumLM=sum(LMatrix(i,:));
sumabsLM=sum(abs(LMatrix(i,:)));
fprintf("nContrast Result Number %1.0f:\n',1)
format rat
disp(LMatrix(i,:));
format
if abs(sumLM)>=3*eps
error('Linear contrasts must sum to 0');
elseif abs((sumabsLM-2))>eps
% This corrects an issue that is found in PASW, in which
% ANOVA doesn't allow fractional linear contrasts and the
% effects size and standard error are wrong if a contrast
% such as [-1 -1 2 0] is used, in which case the sum of
% the absolute value of the contrasts is 4, not 2 and the
% estimated effect size and standard are 2x too large.
LMatrix(i,:)=1/(sumabsLM/2)*LMatrix(i,:);
fprintf(...
'Linear Contrast %1.0f converted to equivalent form:\n',1)
format rat
disp(LMatrix(i,:))
format
end
SSC(i)=sum(LMatrix(i,:).*sumDATA./n)"2/sum(LMatrix(i,:).*2./n);
% Calculate the value of the linear contrast g (from Sleuth)
g(i)=sum(LMatrix(i,:).*meanDATA);
% The equation for the standard error of the linear contrast
% can be found in Statistical Sleuth Chapter 6
seg(i)=sqrt(stats.mse).*sqrt(sum(LMatrix(i,:)."2./n));
F(1)=SSC(i)/stats.mse;
Fprob(i)=1-fcdf(F(i),1,stats.dfe);
if planned==
fprintf('The difference in means is %5.2f +/- %5.2f\n',...
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g(1),seg(1)*tdf)
else
Scheffe=sqrt((C-1)*finv(1-0.05,C-1,stats.dfe));
fprintf(...
'The difference in means is %5.2f +/- %5.2f (Scheffe Interval)\n',...
g(i1),seg(i)*Scheffe)
end
fprintf("\n Source SS df MS F Prob\n)
fprintf(...
'Contrast  %4.1f 1 %4.1f %4.1f %5.3g\n',SSC(1),SSC(),...
F(i),Fprob(i))

fprintf(" Error %4.1f %2.0f %5.2g\n’,stats.mse*stats.dfe,...
stats.dfe,stats.mse)
end

Questions 784-788
13.3 THE PAIRED ¢ TEST
Theorem 13.3.1

Case Study 13.3.1
% LMcs130301 4th.m
% Case Study 13.3.1 p 790-791 in
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu 11/14/10, revised 1/21/11
% Revised: 1/21/11
% X(:,1) Hemoglobin before 60 km walk and X(:,2) after 60-km walk
X=[14.6 13.8
17.315.4
10911.3
12.8 11.6
16.6 16.4
12.212.6
11.211.8
15.415.0
14.8 14.4
16.2 15.0]
D=(X(:,2)-X(:,1));hist(D);figure(gct)
[H,P,CI,STATS] = TTEST(X(:,1),X(:,2),0.05,'both")
fprintf('The paired t test 2-tailed p=%6.4f\n',P);
[p,h,stats] = signtest(D,0,0.05,'method','exact');
fprintf('The sign test exact p=%6.4f\n',p);
[p,h,stats] = signtest(D,0,'method',"approximate');
fprintf("The sign test approximate p=%6.4f\n",p);
[P,H,STATS] = signrank(X(:,1),X(:,2),'alpha',0.05,'method','exact');
fprintf('The sign rank test exact p=%6.4f\n",P);
[P,H,STATS] = signrank(X(:,1),X(:,2),'alpha',0.05,'method','approximate'),
fprintf('The sign rank test approximate p=%6.4f\n',P);
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[P,W]=wilcoxsignrank(X(:,1),X(:,2));
fprintf('The sign rank test approximate p=%6.4f\n',P);

Case study 13.3.2
% LMcs130302_4th.m
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% page 791. A case study solved by the paired t test
% Written by Eugene.Gallagher@umb.edu 11/14/10 Revised 11/16/10
% X(:,1) Alamo rent-a-car, X(:,2)Avis rent-a-car
X=[48.99 51.99
49.99 55.99
42.99 47
34.99 42.99
42.99 4495
33.99 38.99
59 69
42.89 50.99
47.99 49.99
47.99 53.99
35.99 42.99
44.99 44.99]
D=(X(:,2)-X(:,1));hist(D);figure(gcft)
[H,P,CI,STATS] = ttest(X(:,1),X(:,2),0.05,Teft")
fprintf('The paired t test 1-tailed p=%6.4f\n",P);
[p,h,stats] = signtest(D,0,0.05,'method','exact');
fprintf("The sign test exact p=%6.4f\n',p);
[p,h,stats] = signtest(D,0,'method',"approximate');
fprintf('The sign test approximate p=%6.4f\n',p);
[P,H,STATS] = signrank(X(:,1),X(:,2),'alpha',0.05,'method','exact’);
fprintf('The sign rank test exact p=%6.4f\n',P);
[P,H,STATS] = signrank(X(:,1),X(:,2),'alpha',0.05,'method',"approximate'),
fprintf('The sign rank test approximate p=%6.4f\n',P)

13.3.1 Criteria for Pairing
13.3.2 The equivalence of the paired t test and the randomized block
ANOVA when k=2
Questions 795-796
13.4 Taking a second look at statistics (choosing between a two-sample t test and a
paired t test)

Example 13.4.1 Comparing two weight loss plans

Example 13.4.2 Comparing two eye surgery techniques

Appendix 13.A.1 Minitab applications

14 Nonparametric statistics
14.1 Introduction
14.2  The Sign Test
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Theorem 14.2.1

Case Study 14.2.1

% LMcs140201 4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% page 804. A case study solved by the sign test

% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10

%

D=[7.02 7.357.327.33 7.157.26 7.25 7.35 7.38 7.20 7.31 7.24 7.34 ...
7.327347.147.207.417.777.127.457.28 7.347.227.32 7.4 ...
6.997.17.37.217.337.287.357.247.36 7.09 7.32 6.95 7.35 ...
7.36 6.6 7.29 7.31];

hist(D);figure(gcf)

[H,P,CI,STATS] = ttest(D,7.39);

fprintf("nThe paired t test 2-tailed p=%06.4g\n',P);

fprintf('The mean pH = %4.2f with 95%% CI: [%4.2f %4.2f]\n',mean(D),...
CI(1),C1(2));

[p,h,stats] = signtest(D,7.39,0.05,'method','exact');

fprintf("The sign test exact p=%6.4g\n',p);

[p,h,stats] = signtest(D,7.39,'method','approximate');

fprintf("The sign test approximate p=%06.4g;z=%6.4f\n',p,stats.zval);

[P,H,STATS] = signrank(D,7.39,'alpha’,0.05,'method','exact');

fprintf('The sign rank test exact p=%6.4g\n',P);

[P,H,STATS] = signrank(D,7.39,'alpha’,0.05,'method','approximate');

fprintf('The sign rank test approximate p=%6.4g\n',P);

14.2.1 A Small-Sample Sign Test, Use the exact binomial

Case Study 14.2.2

% LMcs140202 4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% page 806. A case study solved by the sign test

% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10

%

D=[4.84.03.84.33.94.63.13.7];

hist(D);figure(gcf)

[H,P,CI,STATS] = ttest(D,3.55);

fprintf("\nThe paired t test 2-tailed p=%06.4g\n",P);

fprintf('The mean caffeine = %4.2f with 95%% CI: [%4.2f %4.2f]\n',...
mean(D), CI(1),CI(2));

[p,h,stats] = signtest(D,3.55,0.05,'method','exact’);

fprintf('The sign test exact 2-tailed p=%6.4g\n',p);

[p,h,stats] = signtest(D,3.55,'method',"approximate');

fprintf('The sign test approximate 2-tailed p=%6.4g\n',p);

[P,H,STATS] = signrank(D,3.55,'alpha',0.05,'method','exact');

fprintf('The sign rank test exact 2-tailed p=%6.4g\n',P);

[P,H,STATS] = signrank(D,3.55,'alpha',0.05,'method','approximate');

fprintf("The sign rank test approximate 2-tailed p=%6.4g\n',P);
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14.2.2 Using the Sign Test for Paired Data (p. 807)

Case Study 14.2.3

% LMcs140203 4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% page 807. A case study solved by the sign test

% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10

%

D=[15 13;12 8;12 12.5;14 12;13 12;13 12.5;13 12.5;12 14;12.5 12;12 11;
12.5 10];

hist(D(:,1)-D(:,2));figure(gcf)

[H,P,CI,STATS] = ttest(D(:,1),D(:,2),0.05,'right');

fprintf("nThe paired t test 1-tailed p=%6.4g\n',P);

[p,h,stats] = signtest(D(:,1),D(:,2),0.05,'method','exact');

fprintf('The sign test exact 1-tailed p=%6.4g\n',p/2);

[p,h,stats] = signtest(D(:,1),D(:,2),'method','approximate');

fprintf('The sign test approximate 1-tailed p=%6.4g\n',p/2);

[P,H,STATS] = signrank(D(:,1),D(:,2),'alpha',0.05,'method','exact');

fprintf("The sign rank test exact 2-tailed p=%6.4g\n',P/2);

[P,H,STATS] = signrank(D(:,1),D(:,2),'alpha',0.05,'method','approximate');

fprintf('The sign rank test approximate 2-tailed p=%6.4g\n',P/2);

Questions p 809-810
143  WILCOXON TESTS
14.3.1 Testing H,: p=p,
Theorem 14.3.1
14.3.2 Calculating p,,(W)
14.3.3 Tables of the cdf, F,(w)

Case Study 14.3.1 Swell sharks

% LMcs140301 4th.m

% Case Study 14.3.1 from

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% page 815. A case study using Wilcoxon signed rank test

% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10

%

D=[13.3213.06 14.02 11.86 13.58 13.77 13.51 14.42 14.44 15.43];

hist(D);figure(gcf)

M=14.6;

[H,P,CI,STATS] = ttest(D,M);

fprintf("nThe paired t test 2-tailed p=%6.4g\n',P);

fprintf('The mean TL/HDI = %4.2f with 95%% CI: [%4.2f %4.2f]\n',...
mean(D), CI(1),CI(2));

[p,h,stats] = signtest(D,M,0.05,'method','exact');

fprintf('The sign test exact 2-tailed p=%6.4g\n",p);
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[p,h,stats] = signtest(D,M,'method','approximate');

fprintf('The sign test approximate 2-tailed p=%6.4g\n',p);
[P,H,STATS] = signrank(D,M,'alpha’,0.05,'method','exact’);
fprintf("The sign rank test exact 2-tailed p=%6.4g\n',P);
[P,H,STATS] = signrank(D,M,'alpha',0.05,'method','approximate’);
fprintf('The sign rank test approximate 2-tailed p=%6.4g\n',P);

Questions p 816-817

14.3.4 A large sample Wilcoxon signed rank test
Theorem 14.3.2
Theorem 14.3.3

Case Study 14.3.2 Methadone

% LMcs140302 4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% page 819. A case study using Wilcoxon signed rank test

% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 12/12/10

%

D=[51 5343 36 55553943 4527212622 43];

hist(D-28);figure(gcf);pause

hist(log(D)-log(28));figure(gcf);pause

M=28;

[H,P,CI,STATS] = ttest(D,M,0.05,'right");

fprintf("nThe paired t test 1-tailed p=%06.4g\n",P);

fprintf('The mean Q score = %4.2f with 95%% CI: [%4.2f %4.2f]\n',...
mean(D), CI(1),CI(2));

[H,P,CL,STATS] = ttest(log(D),log(M),0.05,'right");

fprintf("nThe paired t test of log transform 1-tailed p=%06.4g\n',P);

[p,h,stats] = signtest(D,M,0.05,'method','exact');

fprintf("The sign test exact 1-tailed p=%6.4g\n',p/2);

[p,h,stats] = signtest(D,M,'method','approximate');

fprintf('The sign test approximate 1-tailed p=%6.4g\n’",p/2);

[P,H,STATS] = signrank(D,M,'alpha',0.05,'method','exact’);

fprintf('The sign rank test exact 1-tailed p=%6.4g\n',P/2);

[P,H,STATS] = signrank(D,M,'alpha’,0.05,'method','approximate');

fprintf("The sign rank test approximate 1-tailed p=%6.4g\n',P/2);

14.3.5 Testing H,: pn, = 0 (Paired data)

Case Study 14.3.3

% LMcs140303 4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% page 821. A case study solved by the sign and Wilcoxon signed rank

% test

% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10

%

D=[4.67 4.36;3.5 3.64;3.5 4;3.88 3.26;3.94 4.06;4.88 4.58;4 3.52
4.43.66;4.41 4.43;4.11 4.28;3.45 4.25;4.29 4;4.25 5;4.18 3.85
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4.65 4.18];
hist(D(:,1)-D(:,2));figure(gcf)
[H,P,CI,STATS] = ttest(D(:,1),D(:,2),0.05,'both");
fprintf("nThe paired t test 2-tailed p=%6.4g\n',P);
[p,h,stats] = signtest(D(:,1),D(:,2),0.05,'method','exact');
fprintf('The sign test exact 2-tailed p=%6.4g\n",p);
[p,h,stats] = signtest(D(:,1),D(:,2),'method','approximate');
fprintf('The sign test approximate 2-tailed p=%6.4g\n',p);
[P,H,STATS] = signrank(D(:,1),D(:,2),"alpha',0.05,'method','exact’);
fprintf("The sign rank test exact 2-tailed p=%6.4g\n',P);
[P,H,STATS] = signrank(D(:,1),D(:,2),'alpha',0.05,'method','approximate');
fprintf('The sign rank test approximate 2-tailed p=%6.4g\n',P);

14.3.6 Testing H,: py = py (The Wilcoxon Rank Sum Test)
Theorem 14.3.4

Case Study 14.3.4
% LMcs140304 4th.m
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu; written 11/16/10; revised 11/23/10
% Calls Matlab's ranksum.m and Gallagher's Wilcoxranksum.m
AL=[177 177 165172 172 179 163 175 166 182 177 168 179 177];
NL=[166 154 159 168 174 174 177 167 165 161 164 1617,
boxplot([AL;NL],[ones(length(AL),1);zeros(length(NL),1)]);figure(gcf)
[P,H,STATS] = ranksum(AL,NL,'alpha',0.05,'method','exact’);
fprintf(...
"n\nUsing Matlab"s ranksum, exact p=%06.4f, Rank sum = %4.1f\n',P,...
STATS.ranksum)
if H==1
fprintf('Reject Ho\n\n'")
else
fprintf('Fail to reject Ho\n\n')
end
[pvalue, W,U]=Wilcoxranksum(AL,NL,1);
fprintf('Using Gallagher"s Wilcoxranksum, exact p=%06.4f;\n', P)
fprintf("Wilcoxon"s W = %4.1f; Mann-Whitney U=%4.1f;\n',W,U)
[P,H,STATS] = ranksum(AL,NL,'alpha',0.05,'method','approximate');
fprintf("nUsing Matlab"s ranksum, large sample p=%6.4f;\n',P)
fprintf('Rank sum = %4.1f; z-value=%35.2f\n",STATS.ranksum,STATS.zval)
if H==
fprintf('Reject Ho\n\n')
else
fprintf('Fail to reject Ho\n\n')
end
[pvalue,W,U,Wstar|=Wilcoxranksum(AL,NL,0);
fprintf('Using Gallagher"s Wilcoxranksum, large sample p=%6.4f;\n',P)
fprintf("Wilcoxon"s W = %4.1f; Mann-Whitney U=%#4.1f; z-value=%5.2f\n’,...
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W, U, Wstar)

function [pvalue,W,U,Wstar|=Wilcoxranksum(X,Y ,Ex)

% Wilcoxon rank-sum test

% [pvalue,W,U,Wstar|=Wilcoxranksum(X,Y,Ex)

% Tests the null hypothesis that X & Y have the same pdf.

% Input: X,Y two samples,Ex~=0 indicates do an exact test.

% Output: pvalue: pvalue, 2-sided p value for large sample approximation N(0,1) distribution
% W=Wilcoxon rank sum statistic

% U=Mann-Whitney U statistic

% Wstar=z value for asymptotic large sample approximation
% Calls Wilcoxrsexact

% Written by Eugene.Gallagher@umb.edu

% Revised 11/14/10

X=X();Y=Y();
n=length(X);
m=length(Y);
% Rank the X&Y values from smallest to largest, assigning average ranks to ties.
[T,R,ind]=ties([X;Y]);T=T"; % calls Gallagher's ties.m
% Find sum of ranks of the smaller sample;
1f n<m;
W=sum(R(1:n));
else
W=sum(R(n+1:n+m));
n=m; % Expected value & variance equastions assume n is the size of the smaller group.
m=length(X);
end
U=W-n*(n+1)/2; % Mann-Whitney U statistic
largesample=logical(1);
if nargin>2
if Ex~=0
largesample=logical(0);
end
end
if nargin>2 & ~largesample
ncomb=nchoosek(n+m,n);
if ncomb>1e6
t=sprintf(...
'%d combinations, T=%d min (1e6 combs take 1 min on p4)\n',...
ncomb,round(ncomb/1¢6));
toomany=menu(t,'Stop','Continue');
if toomany==1
largesample=logical(1);fprintf('Large sample approximation for 2-tailed p\n');
end
end
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if ~largesample
pexuptail=wilcoxrsexact(n,m,W,R);
if pexuptail<=0.5
pvalue=2*pexuptail;
else
pvalue=2*(1-pexuptail);
end
end
end
if largesample
% Large sample approximation;% Hollander & Wolfe p. 108
EoW=(n*(m+n+1))/2;
% Calculate the variance of W, without ties and with ties.
if isempty(T) % Size of tied groups from ties.m
VaroW=(m*n*(m+n+1))/12;
else
VaroW=(m*n)/12*(m+n+1-(sum((T-1).*T.*(T+1)))/((m+n)*(m+n-1)));
end
Wstar=(W-(n*(m+n+1)/2))/sqrt(VaroW); % Without ties, tends to an asymptotic N(0,1)
distribution.
% Find the 2-tailedprobability of Wstar from the standard normal distributioin
pvalue=erfc(abs(Wstar)/sqrt(2));
% Note that the exact p values are tabulated, and an exact test, even in the presence of ties
% can be performed, see pp. 113-116 in Hollander & Wolfe.
end

function pexuptail=Wilcoxrsexact(n,m,W,ranks);

% Exact upper tail p values for Wilcoxon Rank Sum statistic
% function pexuptail=Wilcoxrsexact(n,m,W,ranks);

% Borrows shamelessly from Strauss's combvals.m

% Note that Matlab's nchoosek will also generate the list

% of combinations. This program doesn't generate the full

% matrix of combinations, but calculates the test stat only.
% Input: n size of smaller group

% m size of larger group
% W Wilcoxon signed rank statistic
% ranks, actual ranks of n+m items if there are ties present.

% Written by E. Gallagher, Eugene.Gallagher@umb.edu
% Help file for Strauss' combvals:

% COMBVALS: Generates the combinations of n integers taken r at a time. The

% number of such combinations is given by function nc=combin().
%  Usage: ¢ = combvals(n,r)

% n = number of integers (1:n) to be combined.

% r = number to be taken at a time (0 <r <=n).

%

% ¢ = [nc x r] matrix of combinations.
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% Based on ACM Algorithm 94, J. Kurtzberg, Comm. ACM, June 1962.
% RE Strauss, 12/18/98

% An exact conditional distribution with ties follows Hollander & Wolfe p. 115
if nargin<4
ranks=1:n+m;
notiedr=logical(1);
else
if length(ranks)<n+m
error(...
sprintf(...
"Number of ranks (%d) doesn"t match n+m (%d)\n',...
length(ranks),n+m));
end
ranks=sort(ranks);
notiedr=logical(0); % could do a check to see if there really are ties with ties.m
end
ranks=ranks(:);
fudranks=flipud(ranks);
N=n+m;
r=n;
ncomb = nchoosek(N,r); % Matlab's built-in combination function.
if W>=n*(n+m+1)-W;
uppertail=logical(1);
else
W=n*(n+m+1)-W;
uppertail=logical(0);
end
if W>sum(fudranks(1:n))
if uppertail
error('"W impossibly large")
else
error("W impossibly small')
end
elseif W==sum(fudranks(1:n)) & notiedr
if uppertail
pexuptail=1/ncomb;
else
pexuptail=(ncomb-1)/ncomb;
end
return
end
% Strauss's combval lists combinations in ¢ in lexicographic
% order, thus the critical values for sum(C) are larger than
% observed W. We can speed up the process by using
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% Wstar=min(W,n*(m-+n+1)-W) and exiting loop when Wstar fails
% to be less than critical value
if ncomb>1e6
t=sprintf(...
'%d combinations, T=%d min (1e6 combs take 1 min on p4)\n',...
ncomb,round(ncomb/1¢6));
toomany=menu(t,'Stop','Continue');
if toomany==1
return
end
end
% c = zeros(ncomb,r); % Don't need to store values.
Tally=0;
j = zeros(1L,r);

for 1= 1:ncomb
b=1;
endflag = 0;
while(~endflag)
if (j(b)>=b)
a = j(b)-b-1;
forl1=1:b
j() = I+a;
end;
endflag = 1;
else
if (b==r)
forb=1:r
j(®) = N-r-1+b;
end;
endflag = 1;
end;
b=b+l1;
end;
end;
% c(1,:) = N-j(r:-1:1);
c=N-j(r:-1:1);
if sum(ranks(c))>=W
Tally=Tally+1;
end
end;
pexuptail=Tally/ncomb;
if ~uppertail
pexuptail=1-pexuptail;
end
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function [T,R,ind]=ties(A)

% format: [T,R,ind]=ties(A)

% a function to return a row vector of tied groups, T,

% Ranks R (including average ranks) and indices of tied elements
% needed to calculate variance of S using Kendall's

% variance formula & Spearman's r.

% input: A is a row or column vector

% T: a row vector containing number of members of tied groups
% T=0 if there are no tied groups

% sum(T) is equal to the number of tied elements.

% each element of T equals the number in each tied group

% tied groups are sorted in ascending order.

% Examples: A=[1 2 3];[T,R,i]=ties(A)=> T=0,R=[1 2 3],i=[]

% A=[1231]; T=2,R=[1.5 3 4 1.5],i=[1 4]
% A=[212312]; T=[23,R=[41.546154],

% ind=[52316]

% A=[2123312]; T=[232]R=[41546.56.5154]
% ind=[6231745]

% R (Row vec)=numerical rankings of A with ave. ranks for ties
% 1: indices of tied elements, sorted by rank; sorted tied elements=A(i);
% ties.m is used in Kendall.m as T=ties(A), and Spear.m
% written by E. Gallagher, Environmental Sciences Program
% UMASS/Boston, Email: Eugene.Gallagher@umb.edu
% written: 6/16/93, revised 6/17/93
[r,c]=size(A);
if r>c
A=A" % change to row vector
end
[Asort,k]=sort(A);
iota=1:length(A);iota=1ota’;
R(k)=iota;
index=[k' iota];
ind=(];
CDA=[diff(Asort)<=eps 0];
minl=min(find(CDA==1));
if isempty(minl)
T=0;
return
end
1=0;
[rw,cl]=size(CDA);
T=zeros(size(rw,cl));
while ~isempty(minl)
minO0=min(find(CDA==0));
if minO<minl
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CDA(minO:minl1-1)=[];
index(min0:minl-1,:)=[];
else
1=i+1;
T(@1)=min0-minl+1;
CDA(minl:min0)=[];
ind=[ind index(minl:min0,1)'];
R(1,index(minl:min0))=ones(1,T(i))*sum(index(minl:min0,2))/T(i);
index(minl:min0,:)=[];
end
minl=min(find(CDA==1));
end
T(find(T==0))=[];

Questions p 825-826
144 The KRUSKAL-WALLIS TEST
Theorem 14.4.1

Case Study 14.4.1 Draft lottery

% LMcs140401 4th.m

% Case Study 14.4.1

% 1969 draft lottery

% From Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th ed
% Written by Eugene.Gallagher@umb.edu 12/7/2010
% Are the data random?

DATA=[1 305 086 108 032 330 249 093 111 225359 019 129
2 159 144 029 271 298 228 350 045 161 125 034 328
3251297 267 083 040 301 115 261 049 244 348 157
4215210275 081276 020 279 145 232 202 266 165
5101 214 293 269 364 028 188 054 082 024 310 056
6 224 347 139 253 155110 327 114 006 087 076 010
7306091 122 147 035 085 050 168 008 234 051 012
8199 181213 312 321 366 013 048 184 283 097 105
9194 338317 219 197 335277 106 263 342 080 043
10325216 323 218 065 206 284 021 071 220 282 041
11329 150 136 014 037 134 248 324 158 237 046 039
12221 068 300 346 133 272 015 142 242 072 066 314
13318 152259 124 295 069 042 307 175 138 126 163
14238 004 354 231 178 356 331 198 001 294 127 026
15017089 169 273 130 180 322 102 113 171 131 320
16 121 212 166 148 055 274 120 044 207 254 107 096
17235189 033 260 112 073 098 154 255 288 143 304
18 140 292 332 090 278 341 190 141 246 005 146 128
19 058 025 200 336 075 104 227 311 177 241 203 240
20280 302 239 345 183 360 187 344 063 192 185 135
21 186 363 334 062 250 060 027 291 204 243 156 070
22 337290265316 326 247 153 339 160 117 009 053
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23 118 057 256 252319109 172 116 119 201 182 162

24 059 236 258 002 031 358 023 036 195 196 230 095

25052 179 343 351 361 137 067 286 149 176 132 084

26 092 365 170 340 357 022 303 245 018 007 309 173

27 355205268 074 296 064 289 352 233 264 047 078

28 077299 223 262 308 222 088 167 257 094 281 123

29 349 285 362 191 226 353 270 061 151 229 099 016

30 164 NaN 217 208 103 209 287 333 315 038 174 003

31211 NaN 030 NaN 313 NaN 193 011 NaN 079 NaN 100];
DATA=DATAC(:,2:13);

y=DATA(:); % convert the data into columns; drop the NaN elements
group=repmat(1:12,31,1);group=group(:);i=~isnan(y);y=y(i);group=group(i);
[p,table,stats] = kruskalwallis(y,group)

multcompare(stats)

% As described on page 829, test the 1st vs. 2nd 6 months.
g=group;g(group<=6)=1;g(group>6)=2;

[p2,table2,stats2] = kruskalwallis(y,g)

Questions p 830-832
14.5 THE FRIEDMAN TEST
Theorem 14.5.1

Case Study 14.5.1
% LMcs140501 4th.m
% Case Study 14.5.1
% Base running example from Hollander & Wolfe
% From Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th ed
% Written by Eugene.Gallagher@umb.edu 12/7/2010
%
DATA=[5.55.55

5.75.75

565.5

5554

5.855.7

5.555.6

54535

5.55.35

5.155

5.85.7

525.1

5.555.45

5.355.45

54.95

5554

5.555.5

5.555.35

5.55.55
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5.455.25
5654
5.655.55
6.3 6.25];
plot(DATA");
axl=gca;
set(ax1,Xtick',[1 2])
set(ax1,XtickLabel',{ Narrow-Angle','Wide-Angle'} )

figure(gcf);pause
[P,TABLE,STATS]=friedman(DATA);

14.6  TESTING FOR RANDOMNESS

Case Study 14.6.1
% LMcs140601 4th.m
% Uses the resampling toolbox function runs.m
DATA=...
[61 53 58 515234455246 523739 503855595764 734648 47 40 35 407,
n=length(DATA);
[H,P,STATS]=runstest(diff(DATA)>0); % This is not the same runs test a
% Larsen and Marx. Matlab's runs test
% considers the number of positive and
% negative runs, but L&M's test just
% considers the total N (25) in
% calculating its test statistic. Thus,
% L&M's test assumes no trend.
% Theorem 14.6.1:
EW=(2*n-1)/3;
VarW=(16*n-29)/90;
Z=(STATS.nruns-EW)/sqrt(VarW)
if >0
p=1-normcdf(Z);
else
p=normcdf(Z);
end
fprintf(...
'With Matlab"s runs test, P(%2.0f runs with %2.0f cases) is %5.3f\n",...
STATS.nruns,n,P)
fprintf(...
'With Larsen & Marx"s runs test P(%2.0f runs with %2.0f cases) = %5.3f\n’,...
STATS.nruns,n,p)

% Although undocumented, Matlab is probably using the Wald-Wolfowitz runs
% test; When I can get access to my stats books with the exact version
% of the test, I'll check.
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14.7  Taking a second look at statistics (comparing parametric and nonparametric

procedures

Appendix 14.A.1 Minitab applications
Index
alpha level .. ... ... 8,10, 30-32, 40
alternative hypothesis . . ... ... . e 12
ANOVA ... ... 1, 4-10, 12-16, 18-20, 22, 24, 26-31, 33-35, 38, 41, 43

factorial . ... .. 6,7,27

Model L ..o 5

Model 1T . ... 5

NCSTCA . . . oo 7
Bonferroni multiple comparison procedure . ......... ... ... .. 5, 8-11
BoxXplot . ..o 17, 25, 27, 33, 37, 38, 47
Box-Cox transformation .. ... ... ...ttt 5,12
Chi square distribUution . . . ... ... .. 30
COMDINALIONS . . . .. oottt e 48-51
Confidence interval . .. ... .. .. ... . . . 13
critical value . . .. .. 14, 51
degreesof freedom . ................. ... ..... 6,7,9,14-16, 18, 20, 22, 24, 26, 30, 33, 42
Distributions

F o 9
Expected value . . ... .o 9,48
Experiment . .. ... 7,8,10,11,17, 19
experimental design .. ... ... 21,29
Fisher .. 17, 29, 36
heteroscedastiCity . ... ..ot 7,8, 11, 25
honest significant difference ............. ... ... ... ... .. ... ... 5,9,11, 16, 18, 22, 24
INAEPENAENCE . . . ..ot 28
Kruskal Wallis . .. ... e 1,5, 20, 28, 53
Least significant difference ............... ... . 5,9,10
J@ASE SQUATES . . . . oottt 15
level of SIgNIfICANCE . .. ... ot 30
Levene S 1eSt . . 8, 11-13
LKelihood . . ... 13
linear contrast . . ... ..ttt 5,8, 14,15, 19, 20, 31-33, 35, 40, 41
LAN@ar r@EIeSSION . . .ot vttt et ettt e ettt e e e e 33
o . P 8
Matlab ... ... 12, 14, 16, 21, 29, 31-35, 37, 55
Maximum likelihood . .. ... ... . . . . 13
MEAN SQUATE .« v e ot et et et ettt et e e e 5,7,9,10, 14-16, 18, 20, 22, 24, 26

MeEIAN . .. oottt 28
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Mixed model .. ... 7,27
NONPATAMEIIIC . . . ot ottt et e e et e e e e e e e e e e e e et e e 43, 56
null hypothesis ....... ... ... .. . 9,10, 14-16, 20, 26, 28, 48
P-Value ... 14-16, 22, 48
paired data ... ... 45, 46
Parameter . . ... .. 12
POISSON . .o 8
POPUIALION . ..o 7,8
POWeT . . 7,12
Probability ... ... ... 1,5,7,8,10,33
randomized block design . ...... ... .. ... 36
RegIesSION . ... i 15, 33
Repeated Measures . . ... ..ot 6,7
Residuals ... ... 8
RUNS . e 5§
SAMPIE . .o 7,9, 13, 33, 43, 44, 46-49
SN LSt . . ot 42-47
Standard eITor . .. ... 41
SHALISTIC .« o v ettt e 6,9, 14, 48, 49, 55
Studentized range . . . ... ..ot 11, 33
StUAENE S £ L o 6
SUMS Of SQUATES . . . . oot 8
TESESALISTIC . o o v ettt et e e e e e e 6,55
Tukey-Kramer test . .. ... ...t 511
Type L error . ..o 7,33
variable . .. 13,23
VATIANCE . o vttt ettt e 1,5-8,11, 13,17, 19, 29, 30, 33, 48, 49, 52
Wilcoxon rank SUM tESt . . . ...ttt 19, 47

Wilcoxon signed rank test .. ... ... ... 45, 46
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